Topology Back Paper Examination 1st January 2013

Instructions: All questions carry equal marks. All sets and collections in the questions are assumed to be non-empty!

- 1. Describe all distinct topologies that can be put on a set of size 3.
- **2.** Let X and Y be connected spaces and A and B be proper subsets of X and Y respectively. Prove that $(X \times Y) \setminus (A \times B)$ is connected.
- **3.** Prove that there is no surjective continuous map from the closed interval [0,1] to the real line \mathbb{R} . What can you say about the open interval (0,1)?
- 4. Show that every locally compact Hausdorff space is regular.
- 5. Show that a connected metric space having more than one point is uncountable.
- **6.** Assume that X has a countable basis and let A be an uncountable subset of X. Prove that uncountably many points of A are limit points of A.
- 7. Give an example to show that a Hausdorff space with a countable basis need not be metrizable.
- 8. Let X and Y be two spaces. Show that the projection map π : $X \times Y \to X$ is a covering map if and only if Y has discrete topology.
- **9.** (Path lifting lemma) Let $p: E \to B$ be a covering map with $p(e_0) = b_0$. Prove that any path $f: [0,1] \to B$ with $f(0) = b_0$ has a unique lifting to a path $\overline{f}: [0,1] \to E$ with $\overline{f}(0) = e_0$.
- 10. If X is path connected and if x and y are two points of X, prove that $\pi_1(X, x)$ and $\pi_1(X, y)$ are isomorphic groups.